Puzzling Visual Maths For The Curious Minded #1 Archimedes Laboratory Project

Mental & Perceptual Activities that Enhance Critical and Creative Thinking Skills Puzzling Visual Maths Hydrostatic Solution Of Particular Trinominial Equations A. Demanet devised an interesting method of solution of trinomial equations which depends on the use of communicating vessels of convenient forms. To solve an equation of the third degree of the form: x3 + x = c where c is a constant, an inverted cone and a cylinder, joined together by means of a tube, are taken. As shown below. The radius r of the cone and its height h are in the ratio: r/h = √3/√π while the base of the cylinder is taken as 1 cm2 If c cubic centimeters of water are poured into one of the two vessels, the water will rise to the same height h in both. The volume of water contained in the cone will be h3, that in the cylinder h, so that we get: h3 + h = c Therefore, by measuring the height h of the water we obtain a solution of the equation. In the case of the equation x3 - x = c the cone alone is used, and a solid cylindrical piece whose base is 1 cm2 is introduced. The volume c of water poured in will thus be the difference between h3 and h, and therefore h, the height of the liquid, is again a solution. By a substitution z = x√p we can reduce all reducible equations of the third degree such as: x3 + pz = q where p and q are given positive numbers, to the form x3 + x = c *Source: page 253 of “Matematica dilettevole e curiosa” by I. Ghersi You can comment and discuss this puzzle on our FaceBook fan page. Impossible Folding Puzzles Pliages, découpages & magie Postcards T-shirt man T-shirt girl Archimedes Laboratory Project
Mental & Perceptual Activities that Enhance
Critical and Creative Thinking Skills  ABOUT SITEMAP SERVICES PRODUCTS SUBMIT ADVERTISE CONTACT For Publishers    Workshops Books   Puzzles   Prints & Posters   Illusory Art Tweet  Archimedes Laboratory™ by Gianni A. Sarcone is licensed under a